
ANOTHER
UAC-0010
STORY

January 2023

The State Cyber Protection Centre of
the State Service of Special Communication and Information
Protection of Ukraine

https://scpc.gov.ua/

TLP:CLEAR

Table of Content

Foreword 3

Stage 1: Attack Chain Overview 4

Initial Access 5

Execution 5

Persistence 7

Command and Control 8

Stage 2 11

Stage 3 13

Stage 4: Powershell Payload Variants Overview 19

Variant 1 19

Variant 2 21

Variant 3 23

Afterword 25

MITRE ATT&CK®Context 26

Foreword
The Russian-sponsored UAC-0010 group (aka Gamaredon, Armageddon) continues to conduct
frequent cyber attack campaigns against Ukrainian organizations. Despite using mainly repeated

sets of techniques and procedures, adversaries slowly but insistently evolve in their tactics and

redevelop used malware variants to stay undetected. Therefore, it remains one of the key cyber
threats facing organizations in our country.

The group’s recent activity is characterized with the approach of multi-stage download and

deployment of malware payloads, that is used in order to maximize chances of maintaining
persistence on infected hosts. These payloads represent similar variants of the same malware,
designed to behave in practically analogous manner.

The Cyber Incidents Response Operational Centre of the State Cyber Protection Centre of Ukraine

has found and analyzed variants of GammaLoad and GammaSteel malware being used in a recent
campaign that are considered further.

The report highlights the importance of taking necessary proactive behavior-based detection and
response measures for organizations in order to safeguard their networks from similar cyber attacks
and to be prepared for constantly evolving cyber threats in the security landscape.

Stage 1: Attack Chain Overview

Fig1 - infection chain overview

Initial Access
Initial Access is achieved by adversaries using Phishing technique. The .RAR file named
“12-1-125_09.01.2023” was distributed as an attachment to the spear-phishing email. It contains
the only .LNK file named “Запит Служба безпеки України 12-1-125 від 09.01.2023.lnk”
(“Request of the Security Service of Ukraine 12-1-125 dated 09.01.2023.lnk”).

Execution
Running of adversary-controlled code on a remote system is achieved through using User Execution
technique, that means the adversary relies upon a user double-clicking the malicious .LNK file.
Once the victim opens the .LNK file, it uses System Binary Proxy Execution technique through the
execution of Windows-native binary (designed to execute Microsoft HTML Application (HTA) files

(mshta.exe)) to download a file via the URL hxxps://secureurl[.]shop/09.01_otck/quicker[.]rtf .
Access is allowed only from IP addresses inside the Ukrainian address space.

In this example, a trusted, signed utility mshta.exe is abused to proxy execution of Windows Script
Host code (VBScript).

Fig2 - downloading quicker.rtf via malicious URL

The resolution of secureurl[.]shop domain has recently changed from the IP address of MivoCloud
SRL (Republic of Moldova) 194.180.174[.]158 (first seen on 2023-01-01, last seen on
2023-01-16) to the IP address of Security Service of Ukraine 193.29.204[.]56 (first seen on
2023-01-16).
Linking weaponized UAC-0010 domains, involved in malicious operations, with IPs of legitimate

organizations is a systematic approach, used in order to complicate the analysis of their actual
operational infrastructure.

The quicker.rtf file is actually an HTA file that contains VBScript code. The Obfuscated Files or
Information technique is used by adversaries through the presence of two embedded
base64-encoded VBScripts in this VBScript code.

Mshta.exe service is used to achieve Deobfuscate/Decode Files or Information technique and

process the quicker.rtf file with encoded VBScripts inside.

Fig3 - Processing quicker.rtf file with mshta.exe

https://attack.mitre.org/techniques/T1566/001/
https://www.virustotal.com/gui/file/7fedefdfe79d1812d1e34359cb86261b699852b669363467a82b5b95623abebd
https://www.virustotal.com/gui/file/032a5a32190648c4b9482b914cbd829875979841a98b46a4ad5036c3b1a46203
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1218/005/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1140/

Fig4 - embedded Base64-Encoded VBScripts withing quicker.rtf file

The function "AutoOpen'' is used to enable automatic VBScript execution when the file is opened (if

the settings allow it). If the settings don't allow the automatic execution, the statement "on error
resume next" causes VBScript execution to continue with the statement immediately following the
statement that can possibly cause the runtime error (without fixing that runtime error).

Fig5 - Suspicious functions usage

Persistence

The first embedded base64-encoded VBScript provides the instructions for achieving of Persistence
tactic through Scheduled Task technique with the creation of a scheduled task named

Lightworks.Metadata , that executes the newly created С:\Users\%USERPROFILE%\judgment file

with wscript.exe utility every 5 minutes.

Fig6 - Function of creating С:\Users\%USERPROFILE%\judgement file

Fig7 - Lightworks.Metadata task is scheduled to run every 5min

Fig8 - Lightworks.Metadata scheduled task

Fig9 - Action details of Lightworks.Metadata scheduled task

https://attack.mitre.org/techniques/T1053/005/

Persistence tactic is also achieved through Boot or Logon Autostart Execution technique with the
creation of autorun registry key entry named

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\metrics of REG_SZ type

with "wscript.exe \"C:\\Users\\%USERPROFILE%\\judgment\" //e:vbscript //b /cda /asf /icl /wmv"
value.

The registry key HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run by its

definition makes a program run every time the user logs on, therefore the judgment VBScript will be
run automatically every time when the user logs on. Additionally, it will be executed under the
context of the user and will have the account’s associated permission level.

Fig10 - the autorun registry key creation

Command and Control
The content of "C:\\Users\\%USERPROFILE%\\judgment" file corresponds to the second
embedded base64-encoded VBScript, that contains instructions on getting the C2 IP address using
several methods.

One of the methods involves the use of Windows Management Instrumentation technique of

Execution tactic by resolving the malicious IP address of Xor<number>[.]autometrics[.]pro
subdomain, that the infected host will further interact with, using the Windows Management
Instrumentation (WMI) query, a legitimate administrative feature that provides a uniform
environment to access Windows system components.

Fig11 - pinging the domain autometrics[.]pro with WMI query

Fig12 - DNS traffic observed while pinging the domain with WMI query

https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1047/

Fig13 - ICMP traffic observed while pinging the domain Xor71[.]autometrics[.]pro with WMI query

Another methods of getting the C2 IP address correspond to the usage of legitimate third-party

services (cloudflare-dns[.]com, Telegram) in order to bypass network traffic detection.

Fig14- domain resolution with the usage of cloudflare-dns[.]com

Getting the C2 IP address via accessing the Telegram URL occurs by checking the response using a

regular expression. IP addresses, posted in Telegram channels, as well as the channels themselves

are changed periodically.

Fig15 - accessing the Telegram URL hxxps://t[.]me/s/oearps

Fig16 - getting C2 address via Telegram URL hxxps://t[.]me/s/oearps

Fig17 - checking the response using a regular expression of (“==([0-9\@]+)==”)

After obtaining the C2 IP address, this script uses the Web Application Layer Protocol technique for
achieving Command and Control tactic to communicate with the C2 server by issuing a custom

crafted HTTP GET request, the instructions for creating are also embedded within the judgment file.
The custom fields modified in the HTTP request include a hardcoded Accept-Language

"ru-RU,ru;q=0.8,en-US;q=0.6,en;q=0.4" field,user-agent field "mozilla/5.0 (x11; ubuntu; linux x86_64;
rv:82.0) gecko/20100101 firefox/82.0::" with the computer name, volume serial number and

“::/.judgment/” string.

Fig18 - hardcoded user-agent field

Fig19 - hardcoded string used in the Accept-Language field

The judgment script reads the base64-encoded data in response to the HTTP GET request of

hxxp://<C2 IP address>/jumper/<number>.cgm?=Read format, decodes the data and executes it

via wscript.exe utility as a VBScript.

Fig20 - Response on custom crafted HTTP GET request

https://attack.mitre.org/techniques/T1071/001/

Stage 2
Among the extracted VBScript code, received as a response to the custom crafted HTTP GET

request of hxxp://<C2 IP address>/jumper/<number>.cgm?=Read format, there is one embedded
VBScript, where text strings replaces are used for obfuscation.

Fig21 - VBScript, received with HTTP GET response

The embedded VBScript code contains instructions for getting the next C2 server IP address (using
analogical methods, described and used in the first stage). One method includes reaching

hardcoded Telegram URL hxxps://t[.]me/s/siacmgkvy :

Fig22 - Accessing the Telegram URL hxxps://t[.]me/s/siacmgkvy

Fig23 - Getting C2 address via Telegram URL hxxps://t[.]me/s/siacmgkvy

Another method includes pinging the subdomain Write[.]mohsengo[.]shop with WMI query and

checking the ProtocolAddress value to determine the C2 IP address:

Fig24 - Pinging the domain Write[.]mohsengo[.]shop with WMI query

Fig25 - Checking the ProtocolAddress value to get the IP address of Write[.]mohsengo[.]shop

Also, the creation of file named easyaj8.txt is described with hardcoded “lnk_94” content inside,
that corresponds to “HTTP 404 Not Found” response body message.

Fig26 - File easyaj8.txt creation

Fig27 - Content of easyaj8.txt file

The custom crafted HTTP GET request of http://<C2 IP address>/joan.html format is sent.

Fig28 - Crafting the HTTP GET request to http://<C2 IP address>/joan.html

The unencoded response to the custom crafted HTTP GET request is saved under

C:\Users\%USERPROFILE%\AppData\Local\Temp\joan.tmp location.

Fig29 - Response to HTTP GET request to http://<C2 IP address>/joan.html

Stage 3

C:\Users\%USERPROFILE%\AppData\Local\Temp\joan.tmp file is an actual .vbs file that contains
three embedded multi-stage obfuscated VBScripts (two of which are base-64 encoded and one is
obfuscated with string replaces).

Fig30 - First embedded obfuscated VBScript code within joan.tmp file

Fig31 - Second embedded obfuscated VBScript code within joan.tmp file

Fig32 - Third embedded obfuscated VBScript code within joan.tmp file

The file C:\Users\%USERPROFILE%\AppData\Local\Temp\joan.tmp is then executed in the

Windows Shell via wscript.exe with next parameters:

/e:vbscript - the engine that is used to run the script (to run the script that uses a custom file
name extension);

/josephine /jerk - the arguments passed to the script;

/b - specifies batch mode, which does not display alerts, scripting errors, or input prompts.

Fig33 - Process creation description

Fig34 - Process created

During C:\Users\%USERPROFILE%\AppData\Local\Temp\joan.tmp file execution new files were
created under next locations:

- C:\Users\%USERPROFILE%\AppData\Local\Temp (patsyRXc.txt , ozWOV.txt);
- C:\Users\%USERPROFILE%\Favourites (judgment.jas , jonas.lib);
- C:\Users\%USERPROFILE% (trash.dat).

Files judgment.jas , jonas.lib, trash.dat are actual .vbs files.

File C:\Users\%USERPROFILE%\trash.dat is hidden as Attributes property with value “2” was set.

Fig35 - Creation of trash.dat file under C:\Users\%USERPROFILE% directory

Fig36 - Creation of judgment.jas , jonas.lib files under C:\Users\%USERPROFILE%\Favourites directory

The newly created scheduled tasks named Notifications and WindowsActionDialog are executed with

wscript.exe utility every 5 minutes.

Also, autorun registry key entries were created to provide the execution of jonas.lib and judgment.jas
every time the user is logged on:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\Notifications
was added with value
"wscript.exe \"C:\\Users\\Admin\\Favorites\\jonas.lib\" //e:vbscript //b /lib /jas /mdl /h264";

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\WindowsActionDialog
was added with value
"wscript.exe \"C:\\Users\\Admin\\Favorites\\judgment.jas\" //e:vbscript //b /lib /jas /mdl /h264".

Fig37 - Scheduled task Notifications created

Fig38 - Scheduled task Notifications properties

Fig39 - Scheduled task WindowsActionDialog created

Fig40 - Scheduled task WindowsActionDialog properties

File “C:\Users\%USERPROFILE%\AppData\Local\Temp\patsyRXc” contains C2 IP address

(Write<number>[.]antargi[.]ru domain resolution), which is used for crafting HTTP POST requests.

The <number> is the integer part of [(100*rnd)+1] formula execution result. Rnd() function returns
a random number (always less than 1 but greater or equal to 0).

Fig41 - Content of C:\Users\%USERPROFILE%\AppData\Local\Temp\patsyRXc file

File C:\Users\%USERPROFILE%\AppData\Local\Temp\jonas.lib contains instructions about creating
custom crafted HTTP POST requests to C2 IP address of next formats:

- http://<C2 IP address>/judgment/<number>.jas?=Write<number>;

- http://<C2 IP address>/jonas/<number>.dat?=FileExists<number>.

Fig42 - Variants of HTTP POST request to C2 server

Both variants of HTTP POST requests were observed during the network traffic capture.

Fig43 - HTTP POST requests to C2 server

File C:\Users\%USERPROFILE%\AppData\Local\Temp\ozWOV contains text data, received with HTTP
“404 Not Found response” to C2 HTTP POST requests.

Fig44 - Content of C:\Users\%USERPROFILE%\AppData\Local\Temp\ozWOV file

The content of files C:\Users\%USERPROFILE%\AppData\Local\Temp\patsyRXc ,

C:\Users\%USERPROFILE%\AppData\Local\Temp\ozWOV changes as soon as the hardcoded

domain Write<number>[.]antargi[.]ru resolves to another IP address.

HTTP POST request contains a hardcoded user-agent field "mozilla/5.0 (windows nt 6.1)

applewebkit/537.36 (khtml, like gecko) chrome/89.0.4389.90 safari/537.36;;" with the computer

name, volume serial number and “;;/.jackson/.” string.

Fig45 - Getting HTTP 200 OK: responses for an attempt to connect to C2 server

The bodies of HTTP “200 OK:” responses to the above HTTP POST request contained three base-64
encoded PowerShell payload variants that we will consider next.

Stage 4: Powershell Payload Variants Overview

Variant 1

The first payload variant is crafted for sending HTTPS request targeting

http://46[.]101[.]29[.]42/cisco/lab URL over taking the leverage of legitimate Windows processes
(wscript.exe, powershell.exe) for downloading and executing remote PowerShell script.

WScript.Sleep() command is used to suspend the execution of the current script for the specified
number of milliseconds.

Fig46 - Payload for downloading and executing remote PowerShell script

Next, TLSv1.2 encrypted network communication is observed between the infected host and C2 IP

address using self-signed TLS certificate with “Internet Widgits Pty Ltd” default organization name.

Fig47 - TLS-encrypted communication

TLS fingerprints, retrieved from attributes within TLS Server/Client Hello messages:

JA3:c12f54a3f91dc7bafd92cb59fe009a35

JA3s:ec74a5c51106f0419184d0dd08fb05bc

Parameters of the self-signed TLS C2 server`s certificate:

Version V3

Serial number 6096e2219d4e4c456d5dbfa6a90adacc6950e87e

Signature algorithm sha256RSA

Signature hash algorithm sha256

Issuer O = Internet Widgits Pty Ltd
S = Some-State
C = AU

Valid from 2022/10/24 10:11:15

Valid to 2023/10/24 10:11:15

Subject O = Internet Widgits Pty Ltd
S = Some-State
C = AU

Public Key 30 82 02 0a 02 82 02 01 00 cc d1 03 9c 66 e3 72 d9 70
62 9b b4 ea f6 dd 8b 0b 74 3a fd 56 f4 2c 39 d8 8c e8 64
5d aa 94 86 2f ef 0d ed 11 23 36 e7 6b 68 e2 ae 0a ac fb
96 a6 08 ce b0 8a 52 62 4c 83 59 30 9b 9f 08 2a 03 9f
76 f0 96 d0 e9 6b 39 05 a7 6c 2c 0e 50 05 50 21 e9 15
f1 ac b3 a4 5a c5 c4 ed 89 a1 61 4f 03 76 0b 99 2e 0f fd
3f e3 5d 7e 13 7c ca 8e 1e c7 65 9f 63 f6 60 03 d9 d8 c9
ad c6 d0 40 23 cf 64 42 55 33 34 ff c0 fc 54 e2 ac e6 27
09 28 17 ed 5f db 3c a0 57 f7 e6 93 49 19 6e 3a 23 9a
b3 d0 9f b5 df 80 90 9b ef 40 9b 98 60 bb a4 57 fa 3f 5f
da 23 bf 73 fa 80 09 2a 42 5e 2f 47 39 4c 56 dd 93 23
be 95 6d 32 a0 e7 7f d9 db b4 f9 2a 3c 8a 5b d7 49 ae
e5 76 f4 80 0f 0c 8c d7 06 e8 56 0c d2 84 31 e9 90 bd
e3 b7 68 d7 fb 7c 1f 26 ec 41 c1 c8 1e 45 11 03 8b 6a fc
c5 2d d8 39 b3 88 d7 94 c5 00 dd 18 5b 12 21 43 af ca
67 28 bb b8 d6 9f 3b 58 5e c8 8a c7 5e 71 5d 40 d8 ec
0a ab c7 30 dc d0 e8 95 b4 f0 78 b7 21 e9 6e ea 75 13
ef 8b e4 7f 4d 76 49 41 9d 1a 0e 9c 8b 97 90 3c ec 33 df
67 d6 12 b0 66 d6 3a fa 95 5d 61 99 21 57 89 e2 1e ad
52 2b 4d 1d 87 a5 e1 d6 60 1f a7 1b 0e ff 39 a1 2c 9a
2e 66 f4 7c a3 b6 2e c4 88 70 5d 34 5c 8d ed 47 1e 52
64 f3 1e 2d 33 a1 3b 65 c3 67 5c 35 55 36 e7 1b 63 28
45 14 22 bc 6c d2 71 12 60 18 d9 3a a4 ba a5 26 85 37
d5 f3 02 02 6b d1 cc 4a aa 83 1a 98 55 07 1f fc 1f 0b 74
6f ae e4 73 6a 51 b5 65 49 20 56 a1 6a bd 86 37 ab 27
86 5f 1e d5 3e b6 52 8a e6 73 c5 f2 57 5a c7 04 99 6e
ce a1 ff 99 fc 30 48 35 91 fd 61 01 fd 59 c6 19 7f db 0a
c4 45 70 33 55 48 62 9f bd e1 05 6d b2 44 ed 9e 79 f2
b6 58 39 12 4c 35 09 02 03 01 00 01

Public Key parameters 05 00

Thumbprint 42c80702a1304661a16efe208c3f2b36bc1dfdcf

Variant 2
Another received malicious payload is crafted for sending HTTP GET request targeting

http://81[.]19[.]140[.]42/init[.]php URL over taking the leverage of legitimate Windows processes
(wscript.exe, powershell.exe) for downloading and executing remote PowerShell script.

Fig48 - Payload for downloading and executing remote PowerShell script

Fig49 - Payload for creating TcpClient connection

The Collection tactic is achieved through Screen Capture technique over this PowerShell script

execution and uses the System.Drawing , System.Windows.Forms objects to capture the
screenshots of all the active screens (alo from multiple monitors) on the infected machine and
saves it under .PNG file.

First, the screenshot is saved under C:\Users\%USERPROFILE%\AppData\Local\Temp location in

C:\Users\%USERPROFILE%\AppData\Local\Temp\<yyyy.MM.dd-HH.mm.ss>.png format. Next, .PNG
file is converted to a base64-encoded string, saved under the variable and the original screenshot
image file is removed from the disk.

https://attack.mitre.org/techniques/T1113/

Fig50 - Payload for capturing and sending screenshots of infected system

The information about computer name, volume serial number value (converted from 16-bit

hexadecimal to 32-bit format) and base64-encoded screenshot is then exfiltrated over HTTP POST

request to a hardcoded C2 URL http://195[.]189[.]96[.]64/index[.]php with time span of 60s
(Exfiltration over C2 Channel technique is used).

Fig51 - Example POST request of sending screenshots of infected system

https://attack.mitre.org/techniques/T1041/

Variant 3
The third payload variant is crafted for sending HTTP GET request targeting

http://185[.]163[.]45[.]5/cmd URL over the leverage of legitimate Windows processes (wscript.exe,
cmd.exe, powershell.exe) for downloading and executing remote PowerShell script.

Start Sleep Cmdlet is used to pause the activity in a script for the specified period of time.

Invoke-Expression Cmdlet is used to output results of the command. Otherwise, a string submitted
at the command line is returned (echoed) unchanged.

Fig52 - Payload for downloading and executing remote PowerShell script

Fig53 - HTTP response

HTTP response contains payload for creating and establishing TcpClient connection between the
infected system and remote host IP address.

Fig54 - Payload for creating TcpClient connection

GetBytes method is used in the payload to encode commands and their execution results
(represented in UTF8 encoding) into a sequence of bytes to be transmitted over the network. The

Invoke-Expression cmdlet (IEX) runs specified strings as commands and returns the results of these
commands.

As a result, PowerShell commands can be executed remotely and their execution results can be
received by the adversaries.

Fig55 - TCP connection established

After the TCP connection was successfully established, the PowerShell session started.

First, Discovery tactic was used and cmdlets, aimed to get more detailed information about the
system and make the final decision about sending additional stealing malware, were executed,

including getting the list of active processes, system specifications, shared resources, proxy settings
and so on.

After discovering the environment that carries no value for adversaries, Data Manipulation
technique are used and attempts to delete malicious files, executed during the infection chain,
scheduled tasks, recursively remove autorun registry keys and the content of $home directory were
made.

Fig56 - Attempt to recursively remove autorun registry keys

Fig57 - Attempt to recursively remove $home directory

Finally, after accomplishing intrusion goals, the Internal Defacement technique is used in the form

of “hello” message, that was left by a member of the adversary group as a notification about his
presence on the system.

Fig58 - Leaving the “hello” message

After that, System Shutdown/Reboot technique is used, the “Restart-Computer” command was
executed and the activity was ceased.

https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1565/
https://attack.mitre.org/techniques/T1565/
https://attack.mitre.org/techniques/T1491/001/
https://attack.mitre.org/techniques/T1529/

Afterword

All analyzed GammaLoad variants are VBScript droppers, that use similar obfuscation techniques

(base-64 encoding, text strings replaces) and are designed to abuse the trusted, signed system
utilities (WMI, mshta.exe , wscript.exe , powershell.exe) in order to maintain persistence (through

scheduled tasks creation, autorun registry keys modification) and download next-stage VBScript
droppers from C2 servers. Each next-stage downloaded payloads’ specialty is communication with a
different C2 server.

For privacy reasons in order to evade detection Virtual Private Servers continue to be used while
deploying the operational infrastructure. According to the recent history of observed domain names

resolution, next ASNs are actively abused:

The variants of analyzed GammaSteel malware are PowerShell scripts, designed to identify the
potential value of information, located on the infected host and, if needed, be able to perform further
actions on objectives (that may include installing new GammaSteel variants) remotely through
sending screen captures along with system information on C2 server and benefit from executing
PowerShell cmdlets on the infected host.

Analyzing the actions performed on the infected host after gaining the opportunity to execute

PowerShell commands, we can conclude that adversaries are focused more on
espionage/infostealing rather than system destroying activity.

MITRE ATT&CK®Context

Resource Development
TA0042

Acquire Infrastructure
T1583

Domains
T1583.001

Stage Capabilities
T1608

Upload Malware
T1608.001

Initial Access
TA0001

Phishing
T1566

Spearphishing Attachment
T1566.001

Execution
TA0002

Command and Scripting
Interpreter
T1059

PowerShell
T1059.001

Windows Command Shell
T1059.003

Visual Basic
T1059.005

User Execution
T1204

Malicious File
T1204.002

Windows Management
Instrumentation
T1047

Persistence
TA0003

Boot or Logon Autostart Execution
T1547

Registry Run Keys/Startup
Folder
T1547.001

Scheduled Task/Job
T1053

Scheduled Task
T1053.005

Defense Evasion
TA0005

Deobfuscate/Decode Files or
Information
T1140

System Binary Proxy Execution
T1218

Mshta
T1218.005

Obfuscated Files or Information
T1027

Discovery
TA0007

File and Directory Discovery
T1083

Network Share Discovery
T1135

System Information Discovery
T1082

System Service Discovery
T1007

Collection
TA0009

Screen Capture
T1113

Command and Control
TA0011

Application Layer Protocol
T1071

Web Protocols
T1071.001

Encrypted Channel
T1573

Asymmetric Cryptography
T1573.002

Ingress Tool Transfer
T1105

Exfiltration
TA0010

Exfiltration over C2 Channel
T1041

Impact
TA0040

Data Manipulation
T1565

Stored Data Manipulation
T1565.001

Defacement
T1491

Internal Defacement
T1491.001

System Shutdown/Reboot
T1529

